Cellular mechanisms of the adjuvant activity of the flagellin component FljB of Salmonella enterica Serovar Typhimurium to potentiate mucosal and systemic responses.
نویسندگان
چکیده
An expanding area of interest is the utilization of microbe-based components to augment mucosal and systemic immune responses to target antigens. Thus, the aim of the present study was to assess if the flagellin component FljB from Salmonella enterica serovar Typhimurium could act as a mucosal adjuvant and then to determine the cellular mechanism(s) by which FljB mediates its adjuvant properties. To determine if FljB could act as a mucosal adjuvant, mice were immunized by the intranasal (i.n.) route with antigen alone or in conjunction with FljB. Additionally, we assessed how FljB affected the levels of the costimulatory molecules B7-1 and B7-2 on dendritic cells by flow cytometry and determined the functional role these costimulatory molecules played in the adjuvant properties of FljB in vivo. Mice immunized by the i.n. route with antigen and FljB exhibited significantly elevated levels of mucosal and systemic antibody and CD4(+)-T-cell responses compared to mice given antigen only. Stimulation of dendritic cells in vitro with FljB resulted in a pronounced increase in the surface expression of B7-1 and B7-2. The percentage of dendritic cells expressing B7-2 but not B7-1 increased significantly when stimulated with FljB over a concentration range of 10 to 10,000 ng/ml. Immunization of wild-type and B7-1, B7-2, and B7-1/2 knockout mice by the i.n. route revealed that the ability of FljB to increase B7-2 expression is largely responsible for its adjuvant effect in vivo. These findings demonstrate that FljB can act as an effective mucosal adjuvant and that its ability to enhance the level of B7-2 expression is predominantly responsible for its adjuvant properties.
منابع مشابه
Enhancement of Host Immune Responses by Oral Vaccination to Salmonella enterica serovar Typhimurium Harboring Both FliC and FljB Flagella
Flagellin, the structural component of the flagellar filament in various motile bacteria, can contribute to the activation of NF-κB and proinflammatory cytokine expression during the innate immune response in host cells. Thus, flagellin proteins represent a particularly attractive target for the development of vaccine candidates. In this study, we investigated the immune response by increasing ...
متن کاملAnti-flagellin antibody responses elicited in mice orally immunized with attenuated Salmonella enterica serovar Typhimurium vaccine strains.
In the present study we investigated the flagellin-specific serum (IgG) and fecal (IgA) antibody responses elicited in BALB/c mice immunized with isogenic mutant derivatives of the attenuated Salmonella enterica serovar Typhimurium (S. Typhimurium) SL3261 strain expressing phase 1 (FliCi), phase 2 (FljB), or no endogenous flagellin. The data reported here indicate that mice orally immunized wit...
متن کاملHost and bacterial factors affecting induction of immune responses to flagellin expressed by attenuated Salmonella vaccine strains.
Previous observations demonstrated that the delivery of recombinant Salmonella enterica serovar Dublin strains to mice via mucosal routes did not efficiently activate systemic and secreted antibody responses to either type d flagellin or genetically fused heterologous B-cell epitopes, thus reducing the usefulness of the protein as a carrier of epitopes for vaccine purposes. In this work, we inv...
متن کاملCharacterization of a monoclonal antibody directed against Salmonella enterica serovar Typhimurium and serovar [4,5,12:i:-].
Flagellar extracts of Salmonella enterica serovars expressing phase 2 H1 antigenic complex (H:1,2, H:1,5, H:1,6, and H:1,7) and a mutant flagellin obtained by site-directed mutagenesis of the fljB gene from serovar Typhimurium at codon 218, transforming threonine to alanine, expressed in Escherichia coli (fljB218(A)) were used to analyze the H1 antigenic complex. Cross-reactions were detected b...
متن کاملFlagellar phase variation of Salmonella enterica serovar Typhimurium contributes to virulence in the murine typhoid infection model but does not influence Salmonella-induced enteropathogenesis.
Although Salmonella enterica serovar Typhimurium can undergo phase variation to alternately express two different types of flagellin subunit proteins, FljB or FliC, no biological function for this phenomenon has been described. In this investigation, we constructed phase-locked derivatives of S. enterica serovar Typhimurium that expressed only FljB (termed locked-ON) or FliC (termed locked-OFF)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 73 10 شماره
صفحات -
تاریخ انتشار 2005